Modeling Data Distributions: Part 2

- Topics: Empirical Rule and Normal Distributions
- Objective: Students will be able to interpret data percentiles, calculate areas and percentages under normal distributions.
- Standards: AP Stats: VAR-2 (EU), VAR-2.A (LO), VAR-2.A.3 (EK)

Normal Distributions/Empirical Rule

Normal Distributions/Empirical Rule

• Example: The lifespans of meerkats in a particular zoo are normally distributed. The average meerkat lives 10.4 years; the standard deviation is 1.9 years.

• Use the empirical rule (\$3-95-99.7%) to estimate the probability

of a meerkat living longer than 16.1 years.

Normal Distributions: Finding Area

- Example: A set of piano prices are normally distributed with a mean of 3000 dollars and a standard deviation of 200 dollars. An electric piano has a price of 2576 dollars.
- What proportion of piano prices are **higher** than the price of the electric piano?
- You may round your answer to four decimal places.
- Calculate z-score
- 2. Look up in z-score table
- 3. If looking for higher, 1 minus (z-score result). $2 = \frac{5000}{6} \frac{2576 3000}{200}$ $2 = \frac{200}{6} \frac{100}{100} = \frac{200}{100}$ $2 = \frac{200}{100} = \frac{200}{100}$

Normal Distributions: Finding Area Between

- Example: A set of piano prices are normally distributed with a mean of 3000 dollars and a standard deviation of 200 dollars. Two electric pianos have a price of 2576 dollars and 3200 respectively.
- What proportion of piano prices are between the two prices of the electric pianos?
- You may round your answer to four decimal places.

Z-Score Tables

.0179

.0170

.0166

.0158

.0154

.0146

.0143

Normal Calculations in Reverse

- Example: The distribution of SAT scores of all college-bound seniors taking the SAT in 2014 was approximately normal with mean µ=1497 and standard deviation o=322.
 A certain test retake preparation course is designed for students whose SAT scores are in the lower 25% of those who take the test in a given year.
- What is the maximum SAT score in 2014 that meets the course requirements?
- 1. Find z-score proportion of 25%. (Biggest without going over).
- 2. Put pieces into z-score formula and solve for the score.

Normal Calculations in Reverse

- μ =1497 and σ =322.
- lower 25% = .2500 look up on 2-table
- What is the maximum SAT score in 2014 that meets the course requirements?
- Find z-score proportion of 25%. (Biggest without going over).
- 2. Put pieces into z-score formula and solve for the score.

$$.2500 \sim .2483 \implies 2-score = -0.68$$

$$2 = \frac{score - M}{6} = -0.68 = \frac{x - 1497}{322}$$

$$1278 = x$$

Normal Calculations in Reverse

- μ=1497 and σ=322. **Upper** 25%, same as **lower** 75%
- What is the maximum SAT score in 2014 that meets the course requirements?
- Find z-score proportion of 75%. (Biggest without going over). Look for .7500 = $\frac{2}{2}$ - score of 0.67 2. Put pieces into z-score formula and solve for the score.

$$2 = Scorc - M$$
 $0.67 = 2 - 1497$
 322
 $1712.74 = 2$

Displaying and Comparing Quantitative Data

You should be working on the following skills:

- 1. Empirical rule
- 2. Normal distribution: Area above or below a point
- 3. Normal distribution: Area between two points
- 4. Normal calculations in reverse

Ztable.pdf